next up previous
Postscript version of this page

STAT 801: Mathematical Statistics

Probability Definitions

Probability Space (or Sample Space): ordered triple $ (\Omega, {\cal F}, P)$.

Axioms guarantee can compute probabilities by usual rules, including approximation.

Consequences of axioms:

$\displaystyle A_i \in {\cal F}$    implies $\displaystyle \cap_i A_i \in {\cal F}
$

$\displaystyle A_1 \subset A_2 \subset \cdots$    all in $F$ implies $\displaystyle P(\cup A_i) = \lim_{n\to\infty} P(A_n)
$

$\displaystyle A_1 \supset A_2 \supset \cdots$    all in $F$ implies $\displaystyle P(\cap A_i) = \lim_{n\to\infty} P(A_n)
$

Vector valued random variable: function $ X:\Omega\mapsto R^p$ such that, writing $ X=(X_1,\ldots,X_p)$,

$\displaystyle P(X_1 \le x_1, \ldots , X_p \le x_p)
$

is defined for any constants $ (x_1,\ldots,x_p)$. Formally the notation

$\displaystyle X_1 \le x_1, \ldots , X_p \le x_p
$

is a subset of $ \Omega$ or event:

$\displaystyle \left\{\omega\in\Omega: X_1(\omega) \le x_1, \ldots , X_p (\omega) \le x_p \right\}
$

Remember $ X$ is a function on $ \Omega$ so $ X_1$ is also a function on $ \Omega$.

In almost all of probability and statistics the dependence of a random variable on a point in the probability space is hidden! You almost always see $ X$ not $ X(\omega)$.

Borel $ \sigma$-field in $ R^p$: smallest $ \sigma$-field in $ R^p$ containing every open ball.

Every common set is a Borel set, that is, in the Borel $ \sigma$-field.

An $ R^p$ valued random variable is a map $ X:\Omega\mapsto R^p$ such that when $ A$ is Borel then $ \{\omega\in\Omega:X(\omega)\in A\} \in \cal F$.

Fact: this is equivalent to

$\displaystyle \left\{
\omega\in\Omega: X_1(\omega) \le x_1, \ldots , X_p (\omega) \le x_p
\right\}
\in \cal F
$

for all $ (x_1,\ldots,x_p)\in R^p$.

Jargon and notation: we write $ P(X\in A)$ for $ P(\{\omega\in\Omega:X(\omega)\in
A\})$ and define the distribution of $ X$ to be the map

$\displaystyle A\mapsto P(X\in A)
$

which is a probability on the set $ R^p$ with the Borel $ \sigma$-field rather than the original $ \Omega$ and $ \cal F$.

Cumulative Distribution Function (CDF) of $ X$: function $ F_X$ on $ R^p$ defined by

$\displaystyle F_X(x_1,\ldots, x_p) =
P(X_1 \le x_1, \ldots , X_p \le x_p)
$

Properties of $ F_X$ (usually just $ F$) for $ p=1$:
  1. $ 0 \le F(x) \le 1$.


  2. $ x> y \Rightarrow F(x) \ge F(y)$ (monotone non-decreasing).


  3. $ \lim_{x\to - \infty} F(x) = 0$ and $ \lim_{x\to \infty} F(x) = 1$


  4. $ \lim_{x\searrow y} F(x) = F(y)$ (right continuous).


  5. $ \lim_{x\nearrow y} F(x) \equiv F(y-)$ exists.


  6. $ F(x)-F(x-) = P(X=x)$.


  7. $ F_X(t) = F_Y(t) $ for all $ t$ implies that $ X$ and $ Y$ have the same distribution, that is, $ P(X\in A) = P(Y\in A)$ for any (Borel) set $ A$.

The distribution of a random variable $ X$ is discrete (we also call the random variable discrete) if there is a countable set $ x_1,x_2,\cdots$ such that

$\displaystyle P(X \in \{ x_1,x_2 \cdots\}) =1 = \sum_i P(X=x_i)
$

In this case the discrete density or probability mass function of $ X$ is

$\displaystyle f_X(x) = P(X=x)
$

Distribution of rv $ X$ is absolutely continuous if there is a function $ f$ such that

$\displaystyle P(X\in A) = \int_A f(x) dx$ (1)

for any (Borel) set $ A$. This is a $ p$ dimensional integral in general. Equivalently

$\displaystyle F(x) = \int_{-\infty}^x f(y) \, dy
$

Def'n: Any function $ f$ satisfying (0.1) is a density of $ X$.

For most values of $ x$ we then have $ F$ is differentiable at $ x$ and

$\displaystyle F^\prime(x) =f(x) \, .
$

Example: $ X$ is Uniform[0,1].

$\displaystyle F(x) = \left\{ \begin{array}{ll}
0 & x \le 0
\\
x & 0 < x < 1
\\
1 & x \ge 1
\end{array}\right.
$

$\displaystyle f(x) = \left\{ \begin{array}{ll}
1 & 0 < x < 1
\\
\mbox{undefined} & x\in \{0,1\}
\\
0 & \text{otherwise}
\end{array}\right.
$

Example: $ X$ is exponential.

$\displaystyle F(x) = \left\{ \begin{array}{ll}
1- e^{-x} & x > 0
\\
0 & x \le 0
\end{array}\right.
$

$\displaystyle f(x) = \left\{ \begin{array}{ll}
e^{-x} & x> 0
\\
\mbox{undefined} & x= 0
\\
0 & x < 0
\end{array}\right.
$

next up previous



Richard Lockhart
2001-01-05