Spring 2024 - EVSC 445 D100

Environmental Data Analysis (4)

Class Number: 5995

Delivery Method: In Person


  • Course Times + Location:

    Jan 8 – Apr 12, 2024: Tue, Thu, 12:30–2:20 p.m.

  • Prerequisites:

    GEOG 251, or one of STAT 100, 201, 203, 205 or 270 or permission of the instructor.



Introduces environmental scientists to application of modern data analysis methods. This course covers sampling, experimental design, and the analysis of quantitative data collected in the course of environmental monitoring, assessment and restoration programs. Students will be introduced and gain experience with the statistical programming language R.


This course is intended to introduce environmental scientists to the statistical methods that will be useful for them in their work, and provide practical experience therein. This course covers the basic and most useful methods of sampling and experimental design, and the analysis of data collected in observational studies and designed experiments. Particular emphasis will be placed on practical aspects of sampling and experimentation in environmental applications. The course will also include some special topics including, for example, the statistics of environmental impact assessment and those of assessing site reclamation. Examples will be drawn from the literature, and from the instructors own experience. A lab tutorial accompanies the lectures that will include practical examples of the concepts presented in lectures and will give additional support for learning the R programming language.


  • Homework 40%
  • Mini-Project 15%
  • Mid-Term 1 (Open Book) 15%
  • Mid-Term 2 (Open Book) 15%
  • Final 15%


This course will consist of a weekly 2-hour lecture and a 2-hour interactive software tutorial where students will apply the concepts learned in lectures. Lectures will be recorded and offered both synchronously and asynchronously. Laboratory exercises will all be done synchronously. Lectures and laboratories will use Zoom, and relevant course material will be posted to SFU's CANVAS site. Students are expected to be available at the scheduled times for the laboratory for which students will be expected to participate and follow along on a laptop or desktop computer.


The course will require the widely-used programming language R for statistical computing and graphics. This will be required for both lab tutorials and for homework assignments. Students are expected to download and install R or RStudio onto their computer from this website:




Learning Statistics Using R - Randall E. Schumacker (open source)

The course is based on several additional sources which will be assigned throughout the semester and added to the SFU Canvas link as the course progresses.


Your personalized Course Material list, including digital and physical textbooks, are available through the SFU Bookstore website by simply entering your Computing ID at: shop.sfu.ca/course-materials/my-personalized-course-materials.

Registrar Notes:


SFU’s Academic Integrity website http://www.sfu.ca/students/academicintegrity.html is filled with information on what is meant by academic dishonesty, where you can find resources to help with your studies and the consequences of cheating. Check out the site for more information and videos that help explain the issues in plain English.

Each student is responsible for his or her conduct as it affects the university community. Academic dishonesty, in whatever form, is ultimately destructive of the values of the university. Furthermore, it is unfair and discouraging to the majority of students who pursue their studies honestly. Scholarly integrity is required of all members of the university. http://www.sfu.ca/policies/gazette/student/s10-01.html