next up previous


Postscript version of this file

STAT 380 Section 8

Continuous Time Markov Chains

Consider a population of single celled organisms in a stable environment.

Fix short time interval, length $ h$.

Each organism has some probability of dividing to produce two organisms and some other probability of dying.

We might suppose:

Tacit assumptions:

Constants of proportionality do not depend on time: ``stable environment''.

Constants do not depend on organism: organisms are all similar and live in similar environments.

$ Y(t)$: total population at time $ t$.

$ {\cal H}_t$: history of process up to time $ t$.

Condition on event $ Y(t) =n $.

Probability of two or more divisions (more than one division by a single organism or two or more organisms dividing) is $ o(h)$.

Probability of both a division and a death or of two or more deaths is $ o(h)$.

So probability of exactly 1 division by any one of the $ n$ organisms is $ n\lambda h+o(h)$.

Similarly probability of 1 death is $ n\mu h+o(h)$.

We deduce:

$\displaystyle P(Y(t+h)$ $\displaystyle =n+1\vert Y(t)=n, {\cal H}_t)$    
  $\displaystyle = n \lambda h+o(h)$    
$\displaystyle P(Y(t+h)$ $\displaystyle =n-1\vert Y(t)=n, {\cal H}_t)$    
  $\displaystyle = n \mu h+o(h)$    
$\displaystyle P(Y(t+h)$ $\displaystyle =n\vert Y(t)=n, {\cal H}_t)$    
  $\displaystyle = 1-n( \lambda+\mu) h+o(h)$    
$\displaystyle P(Y(t+h)$ $\displaystyle \not\in \{n-1,n,n+1\}\vert Y(t)=n, {\cal H}_t)$    
  $\displaystyle = o(h)$    

These equations lead to:

$\displaystyle P(Y(t+s) = j\vert$ $\displaystyle Y(s)=i,{\cal H}_s)$    
  $\displaystyle = P(Y(t+s) = j\vert Y(s)=i)$    
  $\displaystyle = P(Y(t)=j\vert Y(0)=i)$    

This is the Markov Property.

Definition:A process $ \{Y(t); t \ge 0\}$ taking values in $ S$, a finite or countable state space is a Markov Chain if

$\displaystyle P(Y(t+s) = j\vert$ $\displaystyle Y(s)=i,{\cal H}_s)$    
  $\displaystyle = P(Y(t+s) = j\vert Y(s)=i)$    
  $\displaystyle \equiv {\bf P}_{ij}(s,s+t)$    

Definition:A Markov chain $ Y$ has stationary transitions if

$\displaystyle {\bf P}_{ij}(s,s+t) = {\bf P}_{ij}(0,t) \equiv {\bf P}_{ij}(t)
$

From now on: our chains have stationary transitions.

Summary of Markov Process Results

Detailed development

Suppose $ X$ a Markov Chain with stationary transitions. Then

$\displaystyle P($ $\displaystyle X(t+s)=k \vert X(0)=i)$    
  $\displaystyle = \sum_j P(X(t+s)=k,X(t)=j\vert X(0)=i)$    
  $\displaystyle = \sum_j P(X(t+s)=k\vert X(t)=j,X(0)=i)$    
  $\displaystyle \qquad \times P(X(t)=j\vert X(0)=i)$    
  $\displaystyle = \sum_j P(X(t+s)=k\vert X(t)=j)$    
  $\displaystyle \qquad \times P(X(t)=j\vert X(0)=i)$    
  $\displaystyle = \sum_j P(X(s)=k\vert X(0)=j)$    
  $\displaystyle \qquad \times P(X(t)=j\vert X(0)=i)$    

This shows

$\displaystyle {\bf P}(t+s) = {\bf P}(t){\bf P}(s)
$

which is the Chapman-Kolmogorov equation.

Now consider the chain starting from $ i$ and let $ T_i$ be the first $ t$ for which $ X(t) \neq i$. Then $ T_i$ is a stopping time.

[Technically:

$\displaystyle \{T_i \le t\} \in {\cal H}_t
$

for each $ t$.] Then

$\displaystyle P(T_i$ $\displaystyle >t+s\vert T_i>s,X(0)=i)$    
  $\displaystyle = P(T_i>t+s\vert X(u)=i; 0 \le u \le s)$    
  $\displaystyle = P(T_i > t\vert X(0)=i)$    

by the Markov property.

Conclusion: given $ X(0)=i$, $ T_i$ has memoryless property so $ T_i$ has an exponential distribution. Let $ v_i$ be the rate parameter.

Embedded Chain: Skeleton

Let $ T_1 < T_2 < \cdots$ be the stopping times at which transitions occur. Then $ X_n = X(T_n)$. The sequence $ X_n$ is a Markov chain by the Markov property. That $ {\bf P}_{ii}=0$ reflects the fact that $ P(X(T_{n+1})=X(T_n))=0$ by design.

As before we say $ i \leadsto j$ if $ {\bf P}_{ij}(t)>0$ for some $ t$. It is fairly clear that $ i \leadsto j$ for the $ X(t)$ if and only if $ i \leadsto j$ for the embedded chain $ X_n$.

We say $ i{\leftrightarrow}j$ ($ i$ and $ j$ communicate) if $ i \leadsto j$ and $ j\leadsto i$.

Now consider

$\displaystyle P(X(t+h)=j\vert X(t)=i,{\cal H}_t)
$

Suppose the chain has made $ n$ transitions so far so that $ T_n < t < T_{n+1}$. Then the event $ X(t+h)=j$ is, except for possibilities of probability $ o(h)$ the event that

$\displaystyle t < T_{n+1} \le t+h$    and $\displaystyle X_{n+1} = j
$

The probability of this is

$\displaystyle (v_i h +o(h)) {\bf P}_{ij} = v_i {\bf P}_{ij} h +o(h)
$

Kolmogorov's Equations

The Chapman-Kolmogorov equations are

$\displaystyle {\bf P}(t+h) = {\bf P}(t){\bf P}(h)
$

Subtract $ {\bf P}(t)$ from both sides, divide by $ h$ and let $ h\to 0$. Remember that $ {\bf P}(0)$ is the identity. We find

$\displaystyle \frac{{\bf P}(t+h)-{\bf P}(t)}{h} = \frac{{\bf P}(t)({\bf P}(h) - {\bf P}(0))}{h}$

which gives

$\displaystyle {\bf P}^\prime(t) = {\bf P}(t) {\bf P}^\prime(0)
$

The Chapman-Kolmogorov equations can also be written

$\displaystyle {\bf P}(t+h) = {\bf P}(h) {\bf P}(t)
$

Now subtracting $ {\bf P}(t)$ from both sides, dividing by $ h$ and letting $ h\to 0$ gives

$\displaystyle {\bf P}^\prime(t) ={\bf P}^\prime(0) {\bf P}(t)
$

Look at these equations in component form:

$\displaystyle {\bf P}^\prime(t) ={\bf P}^\prime(0) {\bf P}(t)
$

becomes

$\displaystyle {\bf P}^\prime_{ij}(t) = \sum_k {\bf P}^\prime_{ik}(0) {\bf P}_{kj}(t)
$

For $ i \neq k$ our calculations of instantaneous transition rates gives

$\displaystyle {\bf P}^\prime_{ik}(0) = v_i {\bf P}_{ik}
$

For $ i = k$ we have

$\displaystyle P(X(h)=i\vert X(0)=i) = e^{-v_i h} +o(h)
$

($ X(h)=i$ either means $ T_i > h$ which has probability $ e^{-v_i h}$ or there have been two or more transitions in $ [0,h]$, a possibility of probability $ o(h)$.) Thus

$\displaystyle {\bf P}^\prime_{ii}(0) = -v_i
$

Let $ {\bf R}$ be the matrix with entries

$\displaystyle {\bf R}_{ij} = \begin{cases}
q_{ij} \equiv v_i {\bf P}_{ij} & i \neq j
\\
-v_i & i = j
\end{cases}$

That is

$\displaystyle {\bf R}={\bf P}^\prime(0).$

$ {\bf R}$ is the infinitesimal generator of the chain.

Thus

$\displaystyle {\bf P}^\prime(t) ={\bf P}^\prime(0) {\bf P}(t)
$

becomes

$\displaystyle {\bf P}^\prime_{ij}(t)$ $\displaystyle = \sum_k {\bf R}_{ik}{\bf P}_{kj}(t)$    
  $\displaystyle = \sum_{k \neq i } q_{ik} {\bf P}_{kj}(t) -v_i {\bf P}_{ij}(t)$    

Called Kolmogorov's backward equations.

On the other hand

$\displaystyle {\bf P}^\prime(t) = {\bf P}(t) {\bf P}^\prime(0)
$

becomes

$\displaystyle {\bf P}^\prime_{ij}(t)$ $\displaystyle = \sum_k {\bf P}_{ik}(t) {\bf R}_{kj}$    
  $\displaystyle = \sum_{k \neq j } q_{kj} {\bf P}_{ik}(t) -v_j {\bf P}_{ij}(t)$    

These are Kolmogorov's forward equations.

Remark: When the state space is infinite the forward equations may not be justified. In deriving them we interchanged a limit with an infinite sum; the interchange is always justified for the backward equations but not for forward.

Example: $ S=\{0,1\}$. Then

$\displaystyle {\bf P}= \left[\begin{array}{cc} 0 & 1 \\  1 & 0 \end{array}\right]
$

and the chain is otherwise specified by $ v_0$ and $ v_1$. The matrix $ {\bf R}$ is

$\displaystyle {\bf R}= \left[\begin{array}{cc}-v_0 & v_0 \\  v_1 & -v_1 \end{array}\right]
$

The backward equations become

$\displaystyle {\bf P}_{00}^\prime(t)$ $\displaystyle = v_0 {\bf P}_{10}(t) - v_0 {\bf P}_{00}(t)$    
$\displaystyle {\bf P}_{01}^\prime(t)$ $\displaystyle = v_0 {\bf P}_{11}(t) - v_0 {\bf P}_{01}(t)$    
$\displaystyle {\bf P}_{10}^\prime(t)$ $\displaystyle = v_1 {\bf P}_{00}(t) - v_1 {\bf P}_{10}(t)$    
$\displaystyle {\bf P}_{11}^\prime(t)$ $\displaystyle = v_1 {\bf P}_{01}(t) - v_1 {\bf P}_{11}(t)$    

while the forward equations are

$\displaystyle {\bf P}_{00}^\prime(t)$ $\displaystyle = v_1 {\bf P}_{01}(t) - v_0 {\bf P}_{00}(t)$    
$\displaystyle {\bf P}_{01}^\prime(t)$ $\displaystyle = v_0 {\bf P}_{00}(t) - v_1 {\bf P}_{01}(t)$    
$\displaystyle {\bf P}_{10}^\prime(t)$ $\displaystyle = v_1 {\bf P}_{11}(t) - v_0 {\bf P}_{10}(t)$    
$\displaystyle {\bf P}_{11}^\prime(t)$ $\displaystyle = v_0 {\bf P}_{10}(t) - v_1 {\bf P}_{11}(t)$    

Add $ v_1\times$first plus $ v_0\times$third backward equations to get

$\displaystyle v_1{\bf P}_{00}^\prime(t) + v_0{\bf P}_{10}^\prime(t) = 0
$

so

$\displaystyle v_1{\bf P}_{00}(t) + v_0{\bf P}_{10}(t) = c
$

Put $ t=0$ to get $ c=v_1$. This gives

$\displaystyle {\bf P}_{10}(t) = \frac{v_1}{v_0}\left\{1-{\bf P}_{00}(t)\right\}
$

Plug this back in to the first equation and get

$\displaystyle {\bf P}_{00}^\prime(t) = v_1 -(v_1+ v_0) {\bf P}_{00}(t)
$

Multiply by $ e^{(v_1+v_0)t}$ and get

$\displaystyle \left\{e^{(v_1+v_0)t}{\bf P}_{00}(t)\right\}^\prime = v_1e^{(v_1+v_0)t}
$

which can be integrated to get

$\displaystyle {\bf P}_{00}(t)=\frac{v_1}{v_0+v_1} + \frac{v_0}{v_0+v_1}e^{-(v_1+v_0)t}
$

Alternative calculation:

$\displaystyle {\bf R}= \left[\begin{array}{cc}-v_0 & v_0 \\  v_1 & -v_1 \end{array}\right]
$

can be written as

$\displaystyle {\bf M} {\bf\Lambda} {\bf M}^{-1}
$

where

$\displaystyle {\bf M} = \left[\begin{array}{cc} 1 & v_0\\  \\  1 & -v_1\end{array}\right]
$

$\displaystyle {\bf M}^{-1} = \left[\begin{array}{cc} \frac{v_1}{v_0+v_1} & \frac{v_0}{v_0+v_1}
\\  \\  \frac{1}{v_0+v_1} & \frac{-1}{v_0+v_1}\end{array}\right]
$

and

$\displaystyle {\bf\Lambda} = \left[\begin{array}{cc} 0 & 0\\  \\  0 & -(v_0+v_1)\end{array}\right]
$

Then

$\displaystyle e^{{\bf R}t}$ $\displaystyle = \sum_0^\infty {\bf R}^n t^n/n!$    
  $\displaystyle = \sum_0^\infty \left({\bf M} {\bf\Lambda} {\bf M}^{-1}\right)^n \frac{t^n}{n!}$    
  $\displaystyle = {\bf M} \left(\sum_0^\infty{\bf\Lambda}^n\frac{t^n}{n!}\right){\bf M}^{-1}$    

Now

$\displaystyle \sum_0^\infty{\bf\Lambda}^n\frac{t^n}{n!} = \left[\begin{array}{cc}1 & 0 \\  0&
e^{-(v_0+v_1)t}\end{array}\right]
$

so we get

$\displaystyle {\bf P}(t)$ $\displaystyle = e^{{\bf R}t}$    
  $\displaystyle = {\bf M} \left[\begin{array}{cc}1 & 0 \\ 0& e^{-(v_0+v_1)t}\end{array}\right]{\bf M}^{-1}$    
  $\displaystyle = {\bf P}^\infty - \frac{e^{-(v_0+v_1)t}}{v_0+v_1} {\bf R}$    

where

$\displaystyle {\bf P}^\infty=\left[\begin{array}{cc} \frac{v_1}{v_0+v_1} & \fra...
..._0+v_1}
\\
\\
\frac{v_1}{v_0+v_1} & \frac{v_0}{v_0+v_1}
\end{array}\right]
$

Notice: rows of $ {\bf P}^\infty$ are a stationary initial distribution. If rows are $ \pi$ then

$\displaystyle {\bf P}^\infty = \left[\begin{array}{c}1 \\  1 \end{array}\right] \pi \equiv {\bf 1}\pi
$

so

$\displaystyle \pi {\bf P}^\infty = (\pi {\bf 1})\pi = \pi
$

Moreover

$\displaystyle \pi {\bf R}= {\bf0}
$

Fact: $ \pi_0=v_1/(v_0+v_1)$ is long run fraction of time in state 0.

Fact:

$\displaystyle \frac{1}{T}\int_0^T f(X(t))dt
\to \sum_j \pi_j f(j)
$

Ergodic Theorem in continuous time.

Birth and Death Processes

Consider a population of $ X(t)$ individuals. Suppose in next time interval $ (t,t+h)$ probability of population increase of 1 (called a birth) is $ \lambda_i h+o(h)$ and probability of decrease of 1 (death) is $ \mu_i h +o(h)$.

Jargon: $ X$ is a birth and death process.

Special cases:

All $ \mu_i=0$; called a pure birth process.

All $ \lambda_i=0$ (0 is absorbing): pure death process.

$ \lambda_n = n\lambda$ and $ \mu_n=n\mu$ is a linear birth and death process.

$ \lambda_n \equiv 1$, $ \mu_n \equiv 0$: Poisson Process.

$ \lambda_n = n\lambda + \theta$ and $ \mu_n=n\mu$ is a linear birth and death process with immigration.

Queuing Theory

Ingredients of Queuing Problem:

1: Queue input process.

2: Number of servers

3: Queue discipline: first come first serve? last in first out? pre-emptive priorities?

4: Service time distribution.

Example: Imagine customers arriving at a facility at times of a Poisson Process $ N$ with rate $ \lambda$. This is the input process, denoted $ M$ (for Markov) in queuing literature.

Single server case:

Service distribution: exponential service times, rate $ \mu$.

Queue discipline: first come first serve.

$ X(t)$ = number of customers in line at time $ t$.

$ X$ is a Markov process called $ M/M/1$ queue:

$\displaystyle v_i= \lambda+\mu
$

$\displaystyle {\bf P}_{ij} = \begin{cases}\frac{\mu}{\mu+\lambda} & j=i-1 \ge 0
\\
\frac{\lambda}{\mu+\lambda} & j=i+1
\\
0 & \text{otherwise}
\end{cases}$

Example: $ M/M/\infty$ queue:

Customers arrive according to PP rate $ \lambda$. Each customer begins service immediately. $ X(t)$ is number being served at time $ t$. $ X$ is a birth and death process with

$\displaystyle v_n= \lambda+ n \mu
$

and

$\displaystyle {\bf P}_{ij} = \begin{cases}\frac{i\mu}{i\mu+\lambda} & j=i-1 \ge...
...\
\frac{\lambda}{i \mu+\lambda} & j=i+1
\\
0 & \text{otherwise}
\end{cases}$

Stationary Initial Distributions

We have seen that a stationary initial distribution $ \pi$ is a probability vector solving

$\displaystyle \pi {\bf R}= {\bf0}
$

Rewrite this as

$\displaystyle v_j \pi_j = \sum_{i \neq j} q_{ij} \pi_i
$

Interpretation: LHS is rate at which process leaves state $ j$; process is in state $ j$ a fraction $ \pi_j$ of time and then makes transition at rate $ v_j$. RHS is total rate of arrival in state $ j$. For each state $ i \neq j$ $ \pi_i$ is fraction of time spent in state $ i$ and then $ q_{ij}$ the instantaneous rate of transition from $ i$ to $ j$.

So equation says:

Rate of departure from $ j$ balances rate of arrival to $ j$. This is called balance.

Application to birth and death processes:

Equation is

$\displaystyle (\lambda_j+\mu_j) \pi_j = \lambda_{j-1} \pi_{j-1} +\mu_{j+1} \pi_{j+1}
$

for $ j \ge 1$ and

$\displaystyle \lambda_0 \pi_0 = \mu_1 \pi_1
$

Notice that this permits the recursion

$\displaystyle \pi_1$ $\displaystyle = \frac{\lambda_0}{\mu_1} \pi_0$    
$\displaystyle \pi_2$ $\displaystyle = \frac{\lambda_1+\mu_1}{\mu_2}\pi_1 -\frac{\lambda_0}{\mu_2} \pi_0$    
  $\displaystyle = \frac{\lambda_0\lambda_1}{\mu_1\mu_2} \pi_0$    

which extends by induction to

$\displaystyle \pi_k = \frac{\lambda_0\cdots \lambda_{k-1}}{\mu_1\cdots \mu_k}\pi_0
$

Apply $ \sum \pi_k = 1$ to get

$\displaystyle \pi_0 \left(1+\sum_{n=1}^\infty
\frac{\lambda_0\cdots\lambda_{n-1}}{\mu_1\cdots\mu_n}\right) = 1
$

This gives the formula announced:

$\displaystyle \pi_n = \frac{ \lambda_0 \cdots \lambda_{n-1}}{
\mu_1\cdots\mu_n ...
...=1}^\infty \frac{ \lambda_0 \cdots
\lambda_{n-1}}{
\mu_1\cdots\mu_{n}}\right)}
$

If

$\displaystyle \sum_{n=1}^\infty \frac{ \lambda_0 \cdots
\lambda_{n-1}}{
\mu_1\cdots\mu_{n}}<\infty
$

then we have defined a probability vector which solves

$\displaystyle \pi {\bf R}= {\bf0}
$

Since

$\displaystyle {\bf P}^\prime = {\bf R}{\bf P}
$

we see that

$\displaystyle \left\{\pi {\bf P}(t)\right\}^\prime = 0
$

so that $ \pi{\bf P}(t)$ is constant. Put $ t=0$ to discover that the constant is $ \pi$.


next up previous



Richard Lockhart
2002-03-20