Abstract

Optical emission from silicon is most practically accessible through nonlinear optical wave mixing, due to the indirect bandgap of the material. Although silicon is a material that absorbs visible light, third-harmonic generation driven by infrared signals can be used to generate visible light in silicon structures. In this work, we present a comprehensive investigation into third- harmonic generation in silicon-on-insulator waveguides. We demonstrate that few-micrometer length waveguides can be used to up-convert ultrafast 1550nm laser pulses to their third-harmonic with efficiencies up to ηTHG = 2.8 × 10−5, the highest third-harmonic generation conversion efficiency reported to date in a silicon-based structure. Nonlinear propagation through 200μm long waveguides produces self-compressing temporal solitons, which dramatically broaden and blue shift the observed third-harmonic spectrum. Such devices are envisioned to provide a method for generating coherent visible signals within an integrated, CMOS compatible platform.

Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8