# Fall 2022 - STAT 302 OL01

## Overview

Online

• #### Exam Times + Location:

Dec 8, 2022
Thu, 3:30–6:30 p.m.
Burnaby

• #### Prerequisites:

One of STAT 201, STAT 203, STAT 205, STAT 270, BUS 232, or ECON 233, with a minimum grade of C-.

## Description

#### CALENDAR DESCRIPTION:

The standard techniques of multiple regression analysis, analysis of variance, and analysis of covariance, and their role in observational and experimental studies. This course may not be used to satisfy the upper division requirements of the following programs: statistics major, statistics honours, actuarial science major, and actuarial science honours. Students who have taken STAT 350 first may not then take the course for further credit. Quantitative.

#### COURSE DETAILS:

Mode of Teaching:
Distance Education
This course will have some videos, all of which are asynchronous. There will be no live lectures.

Outline: The course wil cover most of Chapters 1-5 and Sections 7.1 & 7.2.

1. Review: Important concepts from the first course in statistics will be reviewed.
2. Simple linear regression (SLR): models summarizing the relationship between two quantitative variables. This includes the estimation and interpretation of model parameters, assessment of the model’s it, inference, and prediction.
3. Multiple regression: constructing models in which several explanatory variables combine to help explain the variability in a quantitative response variable. This includes model assessment, comparison of two regression lines, interactions between explanatory variables, and multicollinearity. Additional topics may include identifying unusual points, variable selection, and/or coding categorical predictors.
4. Analysis of variance (ANOVA): Use of models to compare means of a quantitative response variable between groups de ined by a categorical explanatory variable (e.g. a treatment variable). Includes model assessment and inference for comparison of means. If time allows, other topics in ANOVA may be included, such as analysis of covariance, tests for homogeneity of variances, the problem of multiple testing, and/or block designs.
5. R is the programming language that you will use in the course to complete assignments. R will be accessed (for free) using the Jupyter platform at SFU.

• Assignments (3) 40%
• Final Exam-In Person - Burnaby Campus 60%

#### NOTES:

You must pass the final exam to pass the course.

Above grading is subject to change.

## Materials

STAT2 Modeling with Regression and ANOVA, 2nd ed. by Cannon, Cobb, Hartlaub, et al. Publisher: Macmillan Learning

Book is available through the SFU Bookstore

#### REQUIRED READING NOTES:

Your personalized Course Material list, including digital and physical textbooks, are available through the SFU Bookstore website by simply entering your Computing ID at: shop.sfu.ca/course-materials/my-personalized-course-materials.

#### Department Undergraduate Notes:

Students with Disabilities:
Students requiring accommodations as a result of disability must contact the Centre for Accessible Learning 778-782-3112 or caladmin@sfu.ca.

Tutor Requests:
Students looking for a tutor should visit https://www.sfu.ca/stat-actsci/all-students/other-resources/tutoring.html. We accept no responsibility for the consequences of any actions taken related to tutors.