Touchscreen Cognitive Testing in Rodents

Touchscreen testing in rodents enables the assessment of targeted cognitive domains comparable to test batteries used in humans, such as the Cambridge Neuropsychological Test Automated Battery (CANTAB), with the goal of having greater relevance to human health and disease. Touchscreen cognitive testing has numerous advantages compared to traditional tests of learning and memory. First, a battery approach can be taken, running a variety of operant tasks using the same testing chamber, which helps control for potential confounds (e.g., types of stimuli, rewards, apparatus). Second, the semi-automated approach enables several behavioural measures to be assessed simultaneously (e.g., accuracy, reaction time, activity counts, omission rates) and minimizes experimenter contact with animals during testing. Third, the precision and control enabled by the tasks, allows us to assess specific aspects of cognition and functions in targeted brain regions. Finally, touchscreen testing is ideal to combine with neurotechnology such as electrophysiology, chemogenetics, and optogenetics. Thus, touchscreen testing in rodents is highly translatable to humans and enables the mapping of complex behaviour onto specific aspects of neurobiology with the highest level of precision and control.

For rodents we use the "Bussey-Saksida” touchscreen chamber. Data will be shared via MouseBytes, which is an open-access database for rodent touchscreen-based cognitive assessment.

Related papers:

Kent, B. A., Heath, C., Kim, C-H., Ahrens, R., Fraser, P. E., St George-Hyslop, P., Bussey, T. J., & Saksida, L. M. (2018). Longitudinal evaluation of Tau-P301L transgenic mice reveals no impairment at 17 months of age. Brain and Behavior, 8(1), e00896.

Nilsson, S. R. O., Fejgin, K., Gastambide, F., Vogt, M. A., Kent, B. A., Nielsen, V., Nielsen, J., Gass, P., Robbins, T. W., Saksida, L. M., Stensbal, T. B., Tricklebank, M. D., Didriksen, M., Bussey, T.    J. (2016). Assessing the cognitive translational potential of a mouse model of the 22q11.2 microdeletion syndrome. Cerebral Cortex, 26(10), 3991-4003.

Nilsson, S. R. O., Celada, P., Fejgin, K., Thelin, J., Nielsen, J., Santana, N., Heath, C. J., Larsen, P. H., Nielsen, V., Kent, B. A., Robbins, T. W., Saksida, L. M., Bastlund, J. F., Bussey, T. J., Artigas, F., Didriksen, M. A. (2016). Mouse model of the 15q13.3 microdeletion syndrome shows prefrontal neurophysiological dysfunctions and associated attentional impairment. Psychopharmacology, 233(11), 2151-2163.

Kim, C. H., Heath, C. J., Kent, B. A., Bussey,T. J., & Saksida, L. M. (2015).  The role of the dorsal hippocampus in two versions of the touchscreen automated paired associates learning (PAL) task for mice. Psychopharmacology, 232(21-22), 3899-3910.

Mar, A., Horner, A. E., Nilsson, S., Alsiö, J., Kent, B. A., Kim, C. H., Holmes, A., Saksida, L. M., Bussey, T. J (2013). The touchscreen operant platform for rodents: tests of executive function. Nature Protocols, 8, 1985-2005.

Horner, A. E., Heath, C. J., Hvoslef-Eide, M., Kent, B. A., Kim, C., Nilsson, S., Alsiö, J., Oomen, C. A., Holmes, A., Saksida, L. M., Bussey, T. J. (2013). The touchscreen operant platform for testing learning and memory in rats and mice. Nature Protocols, 8, 1961-1984.