Summer 2021 - ENSC 813 G100

Deep Learning Systems in Engineering (3)

Class Number: 5045

Delivery Method: In Person

Overview

  • Course Times + Location:

    Tu, Th 2:30 PM – 4:20 PM
    REMOTE LEARNING, Burnaby

  • Exam Times + Location:

    Aug 15, 2021
    12:00 PM – 3:00 PM
    REMOTE LEARNING, Burnaby

  • Prerequisites:

    MATH 251 or ENSC 280 or ENSC 380 or permission of instructor.

Description

CALENDAR DESCRIPTION:

Covers machine learning basics, generalization theory, training, validation and testing. Introduces artificial neural networks, feedforward networks, convolutional networks, and types of layers in deep models. Provides overview of hardware architectures for deep learning: architectural and memory calculations; regularization and optimization of deep learning models. Analyzes recurrent and discursive networks. Culminates in a major project focusing on engineering applications of deep learning in signal processing, communications, biomedical engineering, robotics, or other areas. Students with credit for CMPT 880 - Special Topics in Computing Science: Deep Learning may not take this course for further credit.

Graduate Studies Notes:

Important dates and deadlines for graduate students are found here: http://www.sfu.ca/dean-gradstudies/current/important_dates/guidelines.html. The deadline to drop a course with a 100% refund is the end of week 2. The deadline to drop with no notation on your transcript is the end of week 3.

Registrar Notes:

ACADEMIC INTEGRITY: YOUR WORK, YOUR SUCCESS

SFU’s Academic Integrity web site http://www.sfu.ca/students/academicintegrity.html is filled with information on what is meant by academic dishonesty, where you can find resources to help with your studies and the consequences of cheating.  Check out the site for more information and videos that help explain the issues in plain English.

Each student is responsible for his or her conduct as it affects the University community.  Academic dishonesty, in whatever form, is ultimately destructive of the values of the University. Furthermore, it is unfair and discouraging to the majority of students who pursue their studies honestly. Scholarly integrity is required of all members of the University. http://www.sfu.ca/policies/gazette/student/s10-01.html

TEACHING AT SFU IN SUMMER 2021

Teaching at SFU in summer 2021 will be conducted primarily through remote methods, but we will continue to have in-person experiential activities for a selection of courses.  Such course components will be clearly identified at registration, as will course components that will be “live” (synchronous) vs. at your own pace (asynchronous). Enrollment acknowledges that remote study may entail different modes of learning, interaction with your instructor, and ways of getting feedback on your work than may be the case for in-person classes. To ensure you can access all course materials, we recommend you have access to a computer with a microphone and camera, and the internet. In some cases your instructor may use Zoom or other means requiring a camera and microphone to invigilate exams. If proctoring software will be used, this will be confirmed in the first week of class.

Students with hidden or visible disabilities who believe they may need class or exam accommodations, including in the current context of remote learning, are encouraged to register with the SFU Centre for Accessible Learning (caladmin@sfu.ca or 778-782-3112).