# Edited Book Chapters

Zazkis, R. (2018). Ceci n'est pas une pratique: A commentary. In O. Buchbinder & S. Kuntze (Eds.), *Mathematics teachers engaging with representations of practice.* New York, NY: Springer.

Zazkis, R. (2018). “Canada is better” – An unexpected reaction to the order of operations in arithmetic. In A. Kajander, J. Holt, & E. Chernoff (Eds.), *Teaching and Learning Secondary School Mathematics - Canadian Perspectives in an International Context. *New York, NY: Springer.

Zazkis, R. (2018). Dialogues on Numbers: Script-writing as approximation of practice. In G. Kaiser (Ed.), *Invited Lectures from the 13 ^{th} International Congress on Mathematical Education.* New York, NY: Springer.

Kontorovich, I., & Zazkis, R. (2017). Evoking the feeling of uncertainty for enhancing conceptual knowledge. In C. Andrà, D. Brunetto, E. Levenson and P. Liljedahl (Eds.), *Teaching and learning in maths classrooms. Emerging themes in affect-related research: Teachers’ beliefs, students’ engagement and social interactions* (pp. 187–196). Springer.

Zazkis. R. (2017). On the use of dialogues: Looking back and looking forward. In R. Zazkis & P. Herbst (Eds.), *Scripting Approaches in Mathematics Education: Mathematical Dialogues in Research and Practice* (pp. 389-398). New York, NY: Springer.

Zazkis, R., & Koichu, B. (2017). Dialogues on Dialogues: The use of classical dialogues in mathematics teacher education. In R. Zazkis & P. Herbst (Eds.), *Scripting Approaches in Mathematics Education: Mathematical Dialogues in Research and Practice* (pp. 375-387). New York, NY: Springer.

Koichu, B. & Zazkis, R. (2017). “I understand” talk in script writing: A case from Euclid’s Elements. In R. Zazkis & P. Herbst (Eds.), *Scripting Approaches in Mathematics Education: Mathematical Dialogues in Research and Practice* (pp. 163-184). New York, NY: Springer.

Sinclair, N. & Zazkis, R. . (2017). Everybody counts: Designing tasks for *TouchCounts.* In A. Leung & A. Baccaglini-Frank (Eds.). *Digital Technologies in designing mathematics education tasks: Potential and pitfalls *(pp. 175–191). New York, NY: Springer.

Zazkis, R. & Mamolo, A. (2016.) On numbers: Concepts, operations and structure. In A. Gutierres., P. Boero & G. Leder. (Eds. ), Second *Handbook of Research on the Psychology of Mathematics Education *(pp. 39–72). Rotterdam, Netherlands: Sense Publishers.

Zazkis, D. & Zazkis, R. (2014). Wondering about wonder in mathematics. In M. Pitici (Ed.). *The Best Writing on Mathematics *(pp. 164–187*)*. NJ: The Princeton University Press. (Reprinted from *Wonder-full Education:* *The centrality of wonder in teaching and learning*, New York: Routledge).

Jolfaee, S., Zazkis, R., & Sinclair, N. (2014). It is very, very random because it doesn’t happen very often: Examining learners’ discourse on randomness. In E. Chernoff (Ed.), *Probabilistic thinking: Presenting plural perspectives* (pp. 97–416). Dordrecht, Netherlands: Springer.

Mamolo, A & Zazkis, R. (2014). Contextual considerations in probabilistic situations: an aid or a hindrance? In E. Chernoff & B. Sriraman (Eds.), *Probabilistic thinking: Presenting plural perspectives* (pp. 641–656). Dordrecht, Netherlands: Springer.

Zazkis, D. & Zazkis, R. (2013). Wondering about wonder in mathematics. In A. Cant & K. Egan (Eds.), *Wonder-full Education: The centrality of wonder in teaching and learning across the curriculum *(66–85).* *Routledge*.*

Zazkis, R. & Leikin, R. (2010). Interludes: Mathematical pedagogy and pedagogical mathematics in learning through teaching. In R. Leikin & R. Zazkis (Eds.), *Learning through Teaching Mathematics: Developing teachers’ knowledge and expertise in practice* (pp. 87–89, 189–190). Springer.

Leikin, R. & Zazkis, R. (2010). Teachers’ opportunities to learn mathematics through teaching. In R. Leikin & R. Zazkis (Eds.), *Learning through Teaching Mathematics: Developing teachers’ knowledge and expertise in practice* (pp. 3–22). Dordrecht, Netherlands: Springer.

Zazkis, R. (2010). What have I learned: Mathematical insights and pedagogical implications. In R. Leikin & R. Zazkis (Eds.), *Learning through Teaching Mathematics: Developing teachers’ knowledge and expertise in practice *(pp. 91–110). Dordrecht, Netherlands: Springer.

Zazkis, R. & Holton, D. (2009). Snapshots of creativity in undergraduate mathematics education. In R. Leikin, B. Koichu & A. Berman (Eds.), *Creativity in Mathematics and the Education of Gifted Students *(pp. 345–366). Sense Publishing.

Zazkis, R., Sinclair, N., & Liljedahl, P. (2009). Lesson Play – A vehicle for multiple shifts of attention in teaching. In S. Lerman and B. Davis. (Eds.), *Mathematical Action & Structures Of Noticing: Studies inspired by John Mason* (pp. 165–178). Sense Publishing.

Zazkis, R. (2008). Examples as tools in mathematics teacher education. In D. Tirosh (Ed.), *Tools in Mathematics Teacher Education.* (in Handbook for Mathematics Teacher Education, Vol. 2 (pp. 135–156). Sense Publishing.

Zazkis, R. (2008). Divisibility and transparency of number representations. In M. P. Carlson & C. Rasmussen (Eds.), *Making the Connection: Research and practice in undergraduate mathematics* (pp. 81–92). MAA notes.

Zazkis, R. & Liljedahl, P. (2006). On the path to number theory: Repeating patterns as a gateway. In R. Zazkis and S.R. Campbell (Eds.), *Number Theory in mathematics education: Perspectives and prospects *(pp. 99–114). Lawrence Erlbaum Press.

Zazkis, R. & Campbell, S.R. (2006). Number Theory in mathematics education research: Perspectives and prospects. In R. Zazkis and S.R. Campbell (Eds.), *Number Theory in mathematics education: Perspectives and prospects *(pp. 1–18). Lawrence Erlbaum Press.

Campbell, S. R., & Zazkis, R. (2002). Toward number theory as a conceptual field. In Campbell, S. R, & Zazkis, R. (Eds.), *Learning and teaching number theory: Research in cognition and instruction* (pp. 1–14). *Journal of Mathematical Behavior Monograph. *Westport, CT: Ablex Publishing.

Edwards, L & Zazkis, R. (2002). Pre-service teachers’ generalizations on a number theory task. Campbell. S. R., & Zazkis, R. (Eds.), Learning *and teaching number theory: Research in cognition and instruction *(pp.139–156). *Journal of Mathematical Behavior Monograph. *Westport, CT: Ablex Publishing.

Zazkis, R. (2002) Language of number theory: Metaphor and rigor. Campbell. S. R., & Zazkis, R. (Eds.), *Learning and teaching number theory: Research in cognition and instruction *(pp. 83–96). *Journal of Mathematical Behavior Monograph.* Westport, CT: Ablex Publishing.

Zazkis, R. & Gadowsky, K. (2001). Attending to transparent features of opaque representations of natural numbers. In A. Cuoco (Ed.), *NCTM 2001 Yearbook: The roles of representation in school mathematics *(pp. 41–52). Reston, VA: NCTM.

Leron, U. & Zazkis, R. (1992). Of Geometry, Turtles and Groups. In C. Holes & R. Noss (Eds.), *Learning Mathematics and Logo, *(pp. 319–352). MIT Press.