Edited Book Chapters

Zazkis, R. (2018). Ceci n'est pas une pratique: A commentary. In O. Buchbinder & S. Kuntze (Eds.), Mathematics teachers engaging with representations of practice. New York, NY: Springer.

Zazkis, R. (2018). “Canada is better” – An unexpected reaction to the order of operations in arithmetic.  In A. Kajander, J. Holt, & E. Chernoff (Eds.), Teaching and Learning Secondary School Mathematics - Canadian Perspectives in an International Context. New York, NY: Springer.

Zazkis, R. (2018). Dialogues on Numbers: Script-writing as approximation of practice. In G. Kaiser (Ed.), Invited Lectures from the 13th International Congress on Mathematical Education. New York, NY: Springer.

Kontorovich, I., & Zazkis, R. (2017). Evoking the feeling of uncertainty for enhancing conceptual knowledge. In C. Andrà, D. Brunetto, E. Levenson and P. Liljedahl (Eds.), Teaching and learning in maths classrooms. Emerging themes in affect-related research: Teachers’ beliefs, students’ engagement and social interactions (pp. 187–196). Springer.

Zazkis. R. (2017). On the use of dialogues: Looking back and looking forward.  In R. Zazkis & P. Herbst (Eds.), Scripting Approaches in Mathematics Education: Mathematical Dialogues in Research and Practice (pp. 389-398). New York, NY: Springer.

Zazkis, R., & Koichu, B. (2017). Dialogues on Dialogues: The use of classical dialogues in mathematics teacher education. In R. Zazkis & P. Herbst (Eds.), Scripting Approaches in Mathematics Education: Mathematical Dialogues in Research and Practice (pp. 375-387). New York, NY: Springer.

Koichu, B. & Zazkis, R. (2017). “I understand” talk in script writing: A case from Euclid’s Elements. In R. Zazkis & P. Herbst (Eds.), Scripting Approaches in Mathematics Education: Mathematical Dialogues in Research and Practice (pp. 163-184). New York, NY: Springer.

Sinclair, N. & Zazkis, R. . (2017). Everybody counts: Designing tasks for TouchCounts. In A. Leung & A.  Baccaglini-Frank (Eds.). Digital Technologies in designing mathematics education tasks: Potential and pitfalls (pp. 175–191). New York, NY: Springer.  

Zazkis, R. & Mamolo, A. (2016.) On numbers: Concepts, operations and structure. In A. Gutierres., P. Boero & G. Leder.  (Eds. ), Second Handbook of Research on the Psychology of Mathematics Education (pp. 39–72). Rotterdam, Netherlands: Sense Publishers.  

Zazkis, D. & Zazkis, R. (2014). Wondering about wonder in mathematics. In M. Pitici (Ed.). The Best Writing on Mathematics (pp. 164–187). NJ: The Princeton University Press. (Reprinted from Wonder-full Education: The centrality of wonder in teaching and learning, New York: Routledge).

Jolfaee, S., Zazkis, R., & Sinclair, N. (2014). It is very, very random because it doesn’t happen very often: Examining learners’ discourse on randomness. In E. Chernoff (Ed.), Probabilistic thinking: Presenting plural perspectives (pp. 97–416). Dordrecht, Netherlands: Springer.

Mamolo, A & Zazkis, R. (2014). Contextual considerations in probabilistic situations: an aid or a hindrance? In E. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 641–656). Dordrecht, Netherlands: Springer.

Zazkis, D. & Zazkis, R. (2013). Wondering about wonder in mathematics. In A. Cant & K. Egan (Eds.), Wonder-full Education: The centrality of wonder in teaching and learning across the curriculum (66–85). Routledge.

Zazkis, R. & Leikin, R. (2010). Interludes: Mathematical pedagogy and pedagogical mathematics in learning through teaching. In R. Leikin & R. Zazkis (Eds.), Learning through Teaching Mathematics: Developing teachers’ knowledge and expertise in practice (pp. 87–89, 189–190). Springer.

Leikin, R. & Zazkis, R. (2010). Teachers’ opportunities to learn mathematics through teaching. In R. Leikin & R. Zazkis (Eds.), Learning through Teaching Mathematics: Developing teachers’ knowledge and expertise in practice (pp. 3–22). Dordrecht, Netherlands: Springer.

Zazkis, R. (2010). What have I learned: Mathematical insights and pedagogical implications. In R. Leikin & R. Zazkis (Eds.), Learning through Teaching Mathematics: Developing teachers’ knowledge and expertise in practice (pp. 91–110). Dordrecht, Netherlands: Springer.

Zazkis, R. & Holton, D. (2009). Snapshots of creativity in undergraduate mathematics education. In R. Leikin, B. Koichu & A. Berman (Eds.), Creativity in Mathematics and the Education of Gifted Students (pp. 345–366). Sense Publishing.

Zazkis, R., Sinclair, N., & Liljedahl, P. (2009). Lesson Play – A vehicle for multiple shifts of attention in teaching. In S. Lerman and B. Davis. (Eds.), Mathematical Action & Structures Of Noticing: Studies inspired by John Mason (pp. 165–178). Sense Publishing.

Zazkis, R. (2008). Examples as tools in mathematics teacher education. In D. Tirosh (Ed.), Tools in Mathematics Teacher Education. (in Handbook for Mathematics Teacher Education, Vol. 2 (pp. 135–156). Sense Publishing.

Zazkis, R. (2008). Divisibility and transparency of number representations. In M. P. Carlson & C. Rasmussen (Eds.), Making the Connection: Research and practice in undergraduate mathematics (pp. 81–92). MAA notes.

 

Zazkis, R. & Liljedahl, P. (2006). On the path to number theory: Repeating patterns as a gateway. In R. Zazkis and S.R. Campbell (Eds.), Number Theory in mathematics education: Perspectives and prospects (pp. 99–114). Lawrence Erlbaum Press.

Zazkis, R. & Campbell, S.R. (2006). Number Theory in mathematics education research: Perspectives and prospects. In R. Zazkis and S.R. Campbell (Eds.), Number Theory in mathematics education: Perspectives and prospects (pp. 1–18). Lawrence Erlbaum Press.

Campbell, S. R., & Zazkis, R. (2002). Toward number theory as a conceptual field. In Campbell, S. R, & Zazkis, R. (Eds.), Learning and teaching number theory: Research in cognition and instruction (pp. 1–14). Journal of Mathematical Behavior Monograph. Westport, CT: Ablex Publishing.

Edwards, L & Zazkis, R. (2002). Pre-service teachers’ generalizations on a number theory task. Campbell. S. R., & Zazkis, R. (Eds.), Learning and teaching number theory: Research in cognition and instruction (pp.139–156). Journal of Mathematical Behavior Monograph. Westport, CT: Ablex Publishing.

Zazkis, R. (2002) Language of number theory: Metaphor and rigor. Campbell. S. R., & Zazkis, R. (Eds.), Learning and teaching number theory: Research in cognition and instruction (pp. 83–96). Journal of Mathematical Behavior Monograph. Westport, CT: Ablex Publishing.

Zazkis, R. & Gadowsky, K. (2001). Attending to transparent features of opaque representations of natural numbers. In A. Cuoco (Ed.), NCTM 2001 Yearbook: The roles of representation in school mathematics (pp. 41–52). Reston, VA: NCTM.

Leron, U. & Zazkis, R. (1992). Of Geometry, Turtles and Groups. In C. Holes & R. Noss (Eds.), Learning Mathematics and Logo, (pp. 319–352). MIT Press.

 

 

Print