Refereed Journal Articles

Kontorovich, I., & Zazkis, R. (2017). Mathematical conventions: Revisiting arbitrary and necessary. For the Learning of Mathematics, 37(1), 29–34. 

Zazkis, R. & Mamolo, A. (2016, online first). From disturbance to task design, or a story of a rectangular lake.  Journal of Mathematics Teacher Education.

Zazkis, R. (2017). Lesson Play tasks as a creative venture for teachers and teacher educators.  (ZDM) Zentralblatt für Didaktic en Mathematik – The International Journal on Mathematics Education49, 95–105. 

Zazkis, R. & Kontorovich, I. (2016). A curious case of superscript (-1): Prospective secondary mathematics teachers explain. Journal of Mathematical Behavior. 43, 98-110.

Wijeratne C., & Zazkis, R. (2016).  Exploring conceptions of infinity via super –tasks: A case of Thomson’s lamp and green alien. Journal of Mathematical Behavior, 42, 127-134.

Kontorovich, I., & Zazkis, R. (2016). Turn vs. shape: Teachers cope with incompatible perspectives on angle. Educational Studies in Mathematics, 93(2), 223-243. 

Chernoff, E., Mamolo, A, & Zazkis, R. (2016). An investigation of the representativeness heuristic: the case of a multiple choice exam. . Eurasia Journal of Mathematics, Science and Technology Education, 12(4), 1009-1031.    

Zazkis, D. & Zazkis, R. (2016). Prospective teachers’ conceptions of proof comprehension: Revisiting a proof of the Pythagorean theorem. International Journal of Mathematics and Science Education14, (777-803). 

Wijeratne, C. & Zazkis, R. (2015). On Painter’s paradox: Contextual and mathematical approaches to infinity”. International Journal of Research in Undergraduate Mathematics Education, 1(2), 163–186.    

Zazkis, R. & Truman, J. (2015). From trigonometry to number theory and back: Extending LCM to rational numbers. Digital Experiences in Mathematics Education, 1, 79–86.

Kontorovich, I., & Zazkis, R. (2015). Development of researcher knowledge in mathematics education: Towards a confluence framework. International Journal of Social, Behavioral, Educational, Economic and Management Engineering, 9(5), 1295–1300. 

 Jakody, G. & Zazkis, R. (2015). Continuous problem of function continuity. For the Learning of Mathematics, 35(1) 8–14.

Zazkis, R. & Nejad, M.J. (2014). What Students need: Exploring teachers’ views via imagined role-playing. Teacher Education Quarterly, 41(3), 67–86.

Zazkis, R & Wijeratne, C. (2015). Two Boys problem revisited, or, “What has Tuesday got to do with it?" Mathematics Teaching.

Zazkis, R. & Koichu, B. (2015).  A fictional dialogue on infinitude of primes: Introducing virtual duoethnography.  Educational Studies in Mathematics, 88(2), 163–181.

Wijeratne C., Mamolo, A., & Zazkis, R. (2014). Hilbert’s Grand Hotel with a series twist. International Journal of Mathematical Education in Science and Technology, 45(6), 904–911.  

Zazkis, R. & Zazkis, D. (2014). Script writing in the mathematics classroom: Imaginary conversations on the structure of numbers. Research in Mathematics Education, 16(1), 54–70.

Zazkis, R & Sinclair, N. (2013). Imagining mathematics teaching via scripting tasks. International Journal for Mathematics Teaching and Learning.

Koichu, B. & Zazkis, R. (2013). Decoding a proof of Fermat’s Little Theorem via script writing. Journal of Mathematical Behavior, 32 (364–376).

Zazkis, R., Sinitsky, I., & Leikin. R. (2013). Derivative of area equals perimeter – coincidence or rule? Revisiting and exploring a familiar relationship. Mathematics Teacher, 106(9), 686–693.

Zazkis, R. & Zazkis, D. (2013). Was Polya Japanese? Review of ‘Mathematical thinking: how to develop it in the classroom’ by Masami Isoda and Shigeo Katagiri. Research in Mathematics Education, 15(1), 89–95.

Rowland, T. & Zazkis, R. (2013). Contingency in the mathematics classroom: Opportunities taken and opportunities missed. Canadian Journal of Science, Mathematics and Technology Education, 13(2), 137–153.

Mamolo, A. & Zazkis, R. (2012). Stuck on convention: A story of derivative-relationship. Educational Studies in Mathematics, 81(2), 161–167.

Zazkis, R. & Mamolo, A. (2012). Continuing conversations towards the horizon. For the Learning of Mathematics, 32(1).

Leikin, R. & Zazkis, R. (2012). On the connections between general education theories and theories in mathematics education.  Review of B. Sriraman and L. English (2010), Theories of Mathematics Education: Seeking New Frontiers. Journal for Research in Mathematics Education, 43(2), 223–232.

Zazkis, R., Leikin, R., & Chavoshi Jolfaee, S. (2011). Contributions to teaching of ‘Mathematics for Elementary Teachers courses’: Prospective teachers’ views and examples. Mathematics Teacher Education and Development, 13(2).

Sinitsky, I.,  Leikin. R. & Zazkis, R. (2011). Odd + Odd = Odd, is it possible? Exploring odd and even functions. Mathematics teaching, 225, 30–34.

Sinclair, N., Watson, A., Zazkis, R. & Mason, J. (2011). Structuring of personal example spaces. Journal of Mathematical Behavior, 30(4), 291–303.

Zazkis, R. & Mamolo, A. (2011). Reconceptualising knowledge at the mathematical horizon. For the Learning of Mathematics, 31(2), 8–13.

Zazkis, R. & Zazkis, D. (2011). The significance of mathematical knowledge in teaching elementary methods courses: Perspectives of mathematics teacher educators. Educational Studies in Mathematics, 76(3), 247–263.

Chernoff, E. & Zazkis. R. (2011). From personal to conventional probabilities: from sample set to sample space. Educational Studies in Mathematics, 77(1), 15–33.

Zazkis, R. & Leikin, R. (2010). Advanced mathematical knowledge in teaching practice: Perceptions of secondary mathematics teachers. Mathematical Thinking and Learning, 12(4), 263–281. 

Zazkis, R & Sirotic, N. (2010). Representing and defining irrational numbers: Exposing the missing link. Research in Collegiate Mathematics Education, 7, 1–27.

Leikin, R. & Zazkis, R. (2010). On the content-dependence of prospective teachers’ knowledge: A case of exemplifying definitions. International Journal of Mathematical Education in Science and Technology, 41(4), 451–466. 

Zazkis, R. & Mamolo, A. (2009). Sean vs. Cantor: Using mathematical knowledge in ‘experience of disturbance’. For the Learning of Mathematics, 29(3), 53–56. 

Zazkis, R., Liljedahl, P. & Sinclair, N. (2009). Lesson Plays: Planning teaching vs. teaching planning. For the Learning of Mathematics, 29(1), 40–47. 

Zazkis, R. (2009). Number Theory in mathematics education: Queen and Servant. Mediterranean Journal of Mathematics Education, 8(1).

Mamolo, A. & Zazkis, R. (2008). Paradoxes as a window to infinity. Research in Mathematics Education, 10(2), 167–182.  

Zazkis, R., & Leikin, R. (2008). Exemplifying definitions: A case of a square. Educational Studies in Mathematics, 69(2), 131–148. 

Zazkis, R., Liljedahl, P. & Chernoff, E. (2008). The role of examples on forming and refuting generalizations. Zentralblatt für Didaktic der Mathematik – The International Journal on Mathematics Education, 40(1), 131–141.

Zazkis, R. & Chernoff, E. (2008). What makes a counterexample exemplary? Educational Studies in Mathematics, 68(3), 195–208. 

Zazkis, R. (2008). School mathematics and Disciplinary mathematics: Looking for a possible intersection. Response to Anne Watson. For the Learning of Mathematics, 28(3), 8-9.

Liljedahl, P., Chernoff. E., & Zazkis, R. (2007). Interweaving mathematics and pedagogy in task design: A tale of one task. Journal of Mathematics Teacher Education. 10(4-6), 239–249.

Zazkis, R. & Leikin, R. (2007). Generating examples: From pedagogical tool to a research tool. For the Learning of Mathematics, 27(2), 15–21.

Sirotic, N. & Zazkis, R. (2007). Irrational numbers on a number line – Where are they? International Journal of Mathematical Education in Science and Technology, 38(4), 477–488.

Sirotic, N. & Zazkis, R. (2007). Irrational numbers: The gap between formal and intuitive knowledge. Educational Studies in Mathematics, 65(1), 49-76.

Sinclair, N., Liljedahl, P. & Zazkis, R. (2006). A coloured window on preservice teacher’s conceptions of rational numbers. International Journal of Computers for Mathematical Learning, 11(2), 177–203.

Liljedahl, P., Sinclair, N. & Zazkis, R. (2006). Number concepts with Number Worlds: Thickening understandings. International Journal of Mathematical Education in Science and Technology, 37(3), 253–275.

Zazkis, R., Sinclair, N., Liljedahl, P. (2006). Conjecturing in a computer microworld: Zooming out and zooming in. Focus on Learning Problems in Mathematics, 28(2), 1–19.

Hazzan, O., & Zazkis, R. (2005). Reducing abstraction: The case of school mathematics. Educational Studies in Mathematics, 58(1), 101–119.

Zazkis, R. (2005). Representing numbers: Prime and irrational. International Journal of Mathematical Education in Science and Technology, 36(2–3), 207–218.

Zazkis, R. & Liljedahl, P. (2004). Understanding primes: The role of representation. Journal for Research in Mathematics Education, 35(3), 164–186.

Sinclair, N., Zazkis, R. & Liljedahl, P. (2004). Number Worlds: Visual and experimental access to number theory concepts. International Journal of Computers in Mathematical Learning, 8(3), 235–263.

Zazkis, R., Liljedahl, P. & Gadowsky, K. (2003). Students’ conceptions of function translation: Obstacles, intuitions and rerouting. Journal of Mathematical Behavior, 22, 437–450.

Hazzan. O. & Zazkis. R. (2003). Mimicry of proofs with computers: The case of Linear Algebra. Intenational Journal of Mathematics Education in Science and Technology 34(3), 385–402.

Zazkis, R. & Liljedahl, P. (2002). Generalization of patterns: The tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics, 49. 379–402.

Zazkis, R. & Liljedahl, P. (2002). Arithmetic sequence as a bridge among conceptual fields. Canadian Journal of Science, Mathematics and Technology Education, 2(1). 91–118.

Zazkis, R. & Levy, B. (2001) Truth value of mathematical statements: Can fuzzy logic illustrate students’ decision making? Focus on Learning Problems in Mathematics, 23(4), 1–26.

Moor, J. & Zazkis, R. (2000). Learning mathematics in a virtual classroom: Reflection on experiment. Journal of Computers in Mathematics and Science Teaching, 19(2), 89–114.

Zazkis, R. (2000). Using Code-switching as a tool for learning mathematical language. For the Learning of Mathematics, 20(3), 38–43.

Zazkis, R. (2000). Factors, divisors and multiples: Exploring the web of students’ connections. Research in Collegiate Mathematics Education, 4, 210–238.

Zazkis, R. (1999). Intuitive rules in number theory: Example of “the more of A, the more of B” rule implementation. Educational Studies in Mathematics, 40(2), 197–209. 

Zazkis, R. (1999). Divisibility: A problem solving approach through generalizing and specializing. Humanistic Mathematics Network Journal, 21, 34–38. 

Zazkis, R. (1999). Challenging basic assumptions: Mathematical experiences for preservice teachers. International Journal of Mathematics Education in Science and Technology, 30(5), 631–650.

Hazzan, O. & Zazkis, R. (1999). A perspective on “give an example” tasks as opportunities to construct links among mathematical concepts. Focus on Learning Problems in Mathematics, 21(4), 1–14.

Zazkis, R. & Hazzan, O. (1998). Interviewing in mathematics education research: Choosing the questions. Journal of Mathematical Behavior, 17(4), 429–239.

Zazkis, R. (1998). Divisors and quotients: Acknowledging polysemy. For the Learning of Mathematics, 18(3), 27–30. 

Zazkis, R. (1998). Odds and ends of odds and evens: An inquiry into students’ understanding of even and odd numbers. Educational Studies in Mathematics, 36(1), 73–89.

Zazkis, R. & Gunn, C. (1997). Sets, subsets and the empty set: Students’ constructions and mathematical conventions. Journal of Computers in Mathematics and Science Teaching, 16(1), 133–169.

Dubinsky, E., Leron, U., Dautermann, J., & Zazkis, R. (1997). A Reaction to Burn’s “What are the Fundamental Concepts of Group Theory?” Educational Studies in Mathematics, 34(3), 249–253.

Zazkis, R. & Campbell. S. R. (1996). Prime decomposition: Understanding uniqueness. Journal of Mathematical Behavior, 15(2), 207–218. 

Zazkis, R. & Campbell. S. R. (1996). Divisibility and Multiplicative Structure of Natural Numbers: Preservice teachers’ understanding. Journal for Research in Mathematics Education, 27(5), 540–563.

Zazkis, R., Dubinsky, E., & Dautermann, J. (1996). Coordinating visual and analytic strategies: A study of students’ understanding of the group D4. Journal for Research in Mathematics Education, 27(4), 435–457.

Zazkis, R. & Dubinsky, E. (1996). Dihedral groups: A tale of two interpretations. Research in Collegiate Mathematics Education, 2, 61–82.

Leron, U., Hazzan, O., & Zazkis, R. (1995). Students’ conceptions and misconceptions of group isomorphism. Educational Studies in Mathematics, 29(2), 153–174.

Zazkis, R. (1995). Fuzzy thinking on non-fuzzy situations: Understanding students’ perspective. For the Learning of Mathematics, 15(3), 39–42.

Dubinsky, E., Leron, U., Dautermann, J., & Zazkis, R. (1994). On learning fundamental concepts of group theory. Educational Studies in Mathematics, 27(3), 267–305.

Zazkis, R. & Khoury, H. (1994). To the right of the decimal point: Preservice teachers’ concepts of place value and multidigit structures. Research in Collegiate Mathematics Education, 1, 195–224.

Khoury, H. & Zazkis, R. (1994). On fractions and non-standard representations. Educational Studies in Mathematics, 27(2), 191–204. 

Edwards, L. & Zazkis, R. (1993). Transformation geometry: Naive ideas and formal embodiments. Journal of Computers in Mathematics and Science Teaching, 12(2), 121–145.

Zazkis, R. & Whitkanack, D.(1993). Non-decimals: Fractions in bases other than ten. International Journal of Mathematics Education in Science and Technology, 24(1), 77–83. 

Zazkis, R. & Khoury, H. (1993). Place value and rational number representations: Problem solving in the unfamiliar domain of non-decimals. Focus on Learning Problems in Mathematics, 15(1), 38–51.

Zazkis, R. (1992). Theorem-out-of-action: Formal vs. naive knowledge in solving a graphic programming problem. Journal of Mathematical Behavior, 11(2), 179–192.

Zazkis, R. & Leron, U. (1991). Capturing congruence with a turtle. Educational Studies in Mathematics, 22, 285–295.

Zazkis, R. & Leron, U. (1990). Implementing powerful ideas – the case of RUN. The Computing Teacher, 17(6), 40–43. Reprinted (1989) in SIGCS Newsletter, 3(4), 9–12.

Leron, U. & Zazkis, R. (1989). Functions and variables – a case study of learning mathematics through Logo programming. Mathematics and Computer Education Journal, 23(1), 186–192.

Leron, U. & Zazkis, R. (1986). Mathematical induction and computational recursion. For the Learning of Mathematics, 6(2), 25–28.

Print