Student Project Showcase

Automated Irrigation Monitoring (AIM) System

Team: Mackenzie Calder, Paula Themmen, Erfan Ferdosian, Jacob Erickson, Harleen Dhillon, Rajat Agrawal

Course: SEE 111 – Integrated Energy Solution I

The AIM system is a feedback control system that continuously monitors agricultural soil conditions through the use of a sensor unit, and a user interface. The sensor unit built using a micro-controller equipped with a capacitive moisture sensor relays soil moisture data to a computer application-based user interface. The interface, designed in Excel for the prototype, reads the soil moisture data and notifies an operator when irrigation of the cropland is required. The interface can then control an irrigation system, supplying water until a desired soil moisture level is detected by the system.

View project video here.

SustainInk

Course: SEE 111 – Integrated Energy Solution I

Team: Eddy Sanderson, Alia Gola, Erin Flood, Dana Kadoura, Ryan Cordoni, Aiden Rudy, Akash Bains

Our team created a biodegradable conversion kit for home printers that turns a traditional ink cartridge printer into a reusable, refillable ink reservoir. By creating a refillable system, home printers become more affordable and sustainable by cutting down on plastic waste, and the use of expensive often unrecyclable cartridges. We created our design to model reservoir printers, which are an expensive printing option that is often inaccessible for students and low-income working professionals. By adapting a system that is already in use, we have created a fully integrated system that works on any home printer that uses a cartridge system.

View project video here.

SynthaSift Laundry Microplastic Filter

Course: SEE 111 – Integrated Energy Solution I

Team: Elizabeth Salvosa, Braden Harding, Changle Yu, Cyrus Urbanowicz, Daisy Chen, Mishak Taggart

Laundry systems are leading sources of synthetic material introduced into our biosphere. To help mitigate plastic pollution, we designed the SynthaSift, an inline laundry microplastic filter. Our inspiration draws from existing products, including Lint Luv-R and Filtrol. By enhancing Filtrol's filter range, SynthaSift filters particles approximately ten times finer, while maintaining a competitive sale price. The prototype was 3D printed using biodegradable polylactic acid (PLA), to minimize the environmental impact at each stage of our design. As SEE students, we acknowledge that water is a valuable resource, and it is our responsibility to make positive environmental impacts.

View project video here.