MAXWELL LIBBRECHT
Associate Professor, School of Computing Science
Education
- PhD, Computer Science, University of Washington, 2016
- BSc, Computer Science, Stanford University, 2011
Research interests
- machine learning
- probabilistic modeling
- unsupervised learning
- submodular optimization
- genomics
- gene regulation
Teaching interests
- machine learning
- probability and statistics
- data structures and algorithms
- discrete math
Contact:
Email: maxwl@sfu.ca |
Fax: 778-782-3045 |
Office: SFU Burnaby, TASC 1 9219 |
Web: https://www.libbrechtlab.com/ |
Selected recent publications
- Maxwell W. Libbrecht, William S. Noble. Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16: 321-332, 2015. http://dx.doi.org/10.1038/nrg3920
- Maxwell W. Libbrecht, Ferhat Ay, Michael M. Hoffman, David M. Gilbert, Jeffrey A. Bilmes, and William S. Noble. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression. Genome Research, 25: 544-557, 2015. http://doi.org/10.1101/gr.184341.114
- Maxwell W. Libbrecht, Michael M. Hoffman, Jeffrey A. Bilmes, William S. Noble. Entropic graph-based posterior regularization. Proceedings of the International Conference on Machine Learning (ICML) 2015. http://jmlr.org/proceedings/papers/v37/libbrecht15.html
- Maxwell W. Libbrecht, Jeffrey A. Bilmes, William S. Noble. Eliminating redundancy among protein sequences using submodular optimization. http://dx.doi.org/10.1101/051201