MAXWELL LIBBRECHT

Associate Professor, School of Computing Science

Education

  • PhD, Computer Science, University of Washington, 2016
  • BSc, Computer Science, Stanford University, 2011

Research interests

  • machine learning
  • probabilistic modeling
  • unsupervised learning
  • submodular optimization
  • genomics
  • gene regulation

Teaching interests

  • machine learning
  • probability and statistics
  • data structures and algorithms
  • discrete math

Contact:

Email:  maxwl@sfu.ca
Fax: 778-782-3045
Office: SFU Burnaby, TASC 1  9219
Web:   https://www.libbrechtlab.com/

Selected recent publications

  • Maxwell W. Libbrecht, William S. Noble. Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16: 321-332, 2015. http://dx.doi.org/10.1038/nrg3920
  •  Maxwell W. Libbrecht, Ferhat Ay, Michael M. Hoffman, David M. Gilbert, Jeffrey A. Bilmes, and William S. Noble. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression. Genome Research, 25: 544-557, 2015. http://doi.org/10.1101/gr.184341.114
  • Maxwell W. Libbrecht, Michael M. Hoffman, Jeffrey A. Bilmes, William S. Noble. Entropic graph-based posterior regularization. Proceedings of the International Conference on Machine Learning (ICML) 2015. http://jmlr.org/proceedings/papers/v37/libbrecht15.html
  •  Maxwell W. Libbrecht, Jeffrey A. Bilmes, William S. Noble. Eliminating redundancy among protein sequences using submodular optimization. http://dx.doi.org/10.1101/051201