- About Us
- People
- Undergrad
- Graduate
- Research
- News & Events
-
News by Year
- 2022
- Physics Professors named Canada Research Chairs
- Physics Faculty and Graduate Student Win Teaching Awards
- SFU Physics Professor wins 2021 Buchalter Cosmology Prize
- Dr. Hayden's Research in SFU Scholarly Impact
- Karen Kavanagh selected as a Fellow of the MRS
- Applied Physics undergrad wins AMPP Poster Competition
- Physics BSc Grad Gives Convocation Address
- 2021
- Simmons wins Women of Distinction Award
- Pogosian's Research in SFU Scholarly Impact
- PhD Graduate Awarded Convocation Medal
- Convocation Speaker Aidan Wright
- Nancy Forde Elected BSC President
- Bechhoefer named Royal Society of Canada Fellow
- Jeff Sonier Named American Physical Society Fellow
- SFU undergrads receive quantum grant award
- 2020
- 2019
- 2018
- 2022
- Events by Year
- Events By Category
-
News by Year
- Outreach
- _how-to
- Congratulations to our Class of 2021
- Archive
Student Seminar
TBA
Matthew Leighton, SFU Physics
Location: Online
Synopsis
Motor-driven intracellular transport of organelles, vesicles, and other molecular cargo is a highly collective process. An individual cargo is often pulled by a team of transport motors, with numbers ranging from only a few to several hundred. We explore the behavior of these systems using a stochastic model for transport of molecular cargo by an arbitrary number N of motors obeying linear Langevin dynamics, finding analytic solutions for the N-dependence of the velocity, precision of forward progress, energy flows between different system components, and efficiency. In two opposing regimes, we show that these properties obey simple scaling laws with N. Finally, we explore trade-offs between performance metrics as N is varied, providing insight into how different numbers of motors might be well-matched to distinct contexts where different performance metrics are prioritized.