 About Us
 People
 Undergrad
 Graduate
 Research
 News & Events

News by Year
 2021
 2021 SFU Nobel Prize Lecture Series Features Dr. Andrei Frolov's Research
 Mike Hayden Part of Research Collaboration with World’s First Lasercooling of Antimatter
 SFU Particle Physics Group Observes Vector Boson Fusion Higgs Production in its decays to W bosons for the first time together with the ATLAS collaboration!
 2020
 2019
 2018
 2021
 Events by Year
 Events By Category

News by Year
 Outreach
 _howto
 Archive
800Level Course Descriptions
PHYS 801 Student Seminar
Student Seminar
PHYS 801
Discussion of recent developments in physics, based on student seminars. Attendance is required for all first and second year students proceeding toward MSc or PhD degrees in physics. Course offered regularly.
PHYS 802 Introduction to Graduate Studies: Research and Teaching in Physics
Introduction to Graduate Studies: Research and Teaching in Physics
PHYS 802
Basic skills for research and teaching in physics. Required for all students beginning an MSc or PhD degree in physics. Graded on a satisfactory/unsatisfactory basis.
PHYS 810 Advanced Quantum Mechanics
Advanced Quantum Mechanics
PHYS 810
Advanced nonrelativistic and some basic relativistic quantum mechanics: symmetries, Schroedinger/Heisenberg pictures, mixtures, variational and perturbative methods, Dirac equation. Prerequisite: PHYS 415, or equivalent.
PHYS 811 Topics in Quantum Mechanics
Topics in Quantum Mechanics
PHYS 811
A selection of topics which could include: foundations of quantum mechanics, quantum information theory, Bell's inequality, electron in a magnetic field, formal scattering theory, and others of current interest. Prerequisite: PHYS 810 or equivalent.
PHYS 812 Introduction to Quantum Field Theory
Introduction to Quantum Field Theory
PHYS 812
A first course in relativistic quantum field theory (QFT), mainly quantum electrodynamics (QED). Canonical quantization of the KleinGordon, electromagnetic, and Dirac fields; gauge freedom; Feynman diagrams and rules, with applications to scattering cross sections and pair creation; renormalization, with applications to the anomalous magnetic moment of the electron and the Lamb shift. Prerequisite: PHYS 810 or equivalent.
PHYS 821 Electromagnetic Theory
Advanced Electromagnetism I
PHYS 821
Advanced topics in classical electromagnetic theory: review of Maxwell's equations in free space and in macroscopic media, with applications in contemporary research; relativistic unification of electromagnetism; Lagrangian and Hamiltonian methods in electromagnetism. Prerequisite: PHYS 421 or equivalent.
PHYS 822 Advanced Electromagnetism II
Advanced Electromagnetism II
PHYS 822
Advanced topics in electromagnetic waves: propagation and polarization in free space and in macroscopic media, including dispersive and anisotropic media; conducting and dielectric waveguides and resonators; radiation, scattering, and diffraction. Prerequisite: PHYS 421 or equivalent.
PHYS 833 Biological Physics Laboratory
Biological Physics Laboratory
PHYS 833
Experiments in biological and soft condensed matter physics including investigation of Brownian motion, molecular order and biophysical forces using techniques such as optical trapping, NMR, spectroscopy and xray diffraction. Attention will also be given to more general skills, including experimental design, operating and troubleshooting experimental equipment, data analysis, and the presentation of experimental results. Prerequisite: PHYS 231 or MBB 309W; PHYS 347 or 344 or MBB 323 or CHEM 360; or permission of the department.
PHYS 841 Statistical Mechanics
Statistical Mechanics
PHYS 841
Review of ensembles and thermodynamics, ideal gases, imperfect classical gases, classical and modern theories of phase transitions, renormalization group. Course offered regularly. Prerequisite: PHYS 445 or equivalent.
PHYS 849 Topics in Nanophysics
Topics in Nanophysics
PHYS 849
Topics in nanophysics including: growth and fabrication of nanostructures, mechanical constraints on nanostructure formation, electronic and optical properties of reduced dimensional structures, quantum wells, molecular nanostructures, nanowires and quantum dots, ballistic transport and diffusive transport, tunneling, magnetotransport, interference effects. Applications to various nanodevice structures will illustrate key concepts. Prerequisite: PHYS 365 (Semiconductor Devices) or equivalent or PHYS 465 (Solid State Physics) or equivalent, or permission of the instructor.
PHYS 847 Topics in SoftCondensed Matter and Biological Physics
Biological and SoftMatter Physics
PHYS 847
An introduction to one of several topics in biological and softmatter physics. Recent versions have focused on physical perspectives on molecular and cell biology: the roles of diffusion, entropy, free energy, and information in the structural, material, and functional properties of living and softmatter systems. Prerequisite: Recommended prerequisite: PHYS 445 or equivalent.
PHYS 855 Modern Optics
Modern Optics
PHYS 855
Optical physics, including geometrical and physical optics, waves in anisotropic media, coherence, image formation and Fourier optics, guided wave optics and selected advanced topics such as lasers, nonlinear optics, photonics and quantum optics. Prerequisite: Permission of the instructor.
PHYS 861 Introduction to Solid State Physics
Introduction to Solid State Physics
PHYS 861
Free electron theory, crystal structure, band theory, Bloch's theorem, electron dynamics, phonons, semiconductors. Course offered regularly. Prerequisite: PHYS 465 or equivalent, and PHYS 415.
PHYS 862 Solid State Physics II
Solid State Physics II
PHYS 862
Special topics in solid state physics such as superconductivity, magnetism, optical properties of solids, electron correlations. Course offered regularly. Prerequisite: PHYS 861.
PHYS 863 Surface Science, Thin Films and Interfaces
Surface Science, Thin Films and Interfaces
PHYS 863
Review of surface science techniques: Auger, XPS electron spectroscopies, low energy electron diffraction (LEED), high energy electron diffraction (RHEED), Scanning tunnelling microscopy (STM). Review of thin film deposition techniques: molecular beam epitaxy of metallic and semiconductor multilayer and superlattice structures. Physics and chemistry of surfaces and interfaces. Course offered occasionally. Prerequisite: PHYS 810, 821, 861 or permission of the department.
PHYS 864 Structural Analysis of Materials
Structural Analysis of Materials
PHYS 864
The application of transmission electron microscopy (TEM) and xray diffraction techniques to the study of the structure of materials. Handson instruction about the operation of a TEM and xray diffractometers is provided. The basic theory required for analyzing TEM and xray images and diffraction data is described. Prerequisite: Permission of instructor.
PHYS 871 Introduction to Elementary Particle Physics
Introduction to Elementary Particle Physics
PHYS 871
Elementary particle phenomenology; classification of particles, forces, conservation laws, relativistic scattering theory, electromagnetic interactions of leptons and hadrons, weak interactions, gauge theories, strong interactions. Prerequisite: Recommended Corequisite: PHYS 812.