- About
- People
- Faculty
- Tim Audas
- Christopher Beh
- Lorena Braid
- Fiona S.L. Brinkman
- Mark Brockman
- Jack Chen
- Jonathan Choy
- Lisa Craig
- Sharon Gorski
- Nicholas Harden
- Nancy Hawkins
- Robert Holt
- William Hsiao
- Valentin Jaumouillé
- Lisa Julian
- Dustin King
- Irina Kovalyova
- Mani Larijani
- Amy Lee
- Michel Leroux
- Ryan Morin
- Ingrid Northwood
- Mark Paetzel
- Frederic Pio
- Lynne Quarmby
- Dheva Setiaputra
- Michael Silverman
- Sophie Sneddon
- Glen Tibbits
- Peter Unrau
- Esther Verheyen
- Stephanie Vlachos
- David Vocadlo
- Edgar Young
- Emeritus Faculty
- Associate Members
- Adjunct Faculty
- Research Personnel
- Graduate & Postdocs
- Staff
- Department Committees
- Faculty
- Undergraduate
- Prospective Students
- Admission & Transferring
- Degree Programs
- MBB Co-op Program
- Careers in Molecular Biology and Biochemistry
- Scholarships & Funding
- Student Stories
- Contact Us
- Current Students
- Advising
- Courses
- Degree Programs
- MBB Co-op Program
- Research Opportunities
- Scholarship & Funding
- Student Resources
- Prospective Students
- Graduate
- Prospective Students
- Current Students
- Manage Your Program
- Degree Requirements
- Courses
- Course Descriptions
- Course Offerings
- Spring (1241)
- Summer (1244)
- Fall (1247)
- Spring (1231)
- Summer (1234)
- Fall (1237)
- Spring (1221)
- Summer (1224)
- Fall (1227)
- Fall (1217)
- Summer (1214)
- Spring (1211)
- Fall (1207)
- Summer (1204)
- Spring (1201)
- Fall (1197)
- Summer (1194)
- Spring (1191)
- Fall (1187)
- Summer (1184)
- Spring (1181)
- Fall (1177)
- Summer (1174)
- Spring (1171)
- Fall (1167)
- Summer (1164)
- Spring (1161)
- Fall (1157)
- Summer (1154)
- Spring (1151)
- Funding and Awards
- Forms And Resources
- Events
- Graduate Student Caucus
- Research
- Research Labs
- Audas Lab
- Beh Lab
- Braid lab
- Brinkman Lab
- Brockman Lab
- Chen Lab
- Choy Lab
- Craig Lab
- Gorski Lab
- Harden Lab
- Hawkins Lab
- Holt Lab
- Hsiao Lab
- Jaumouillé Lab
- King Lab
- Larijani Lab
- Lee Lab
- Leroux Lab
- Morin Lab
- Paetzel Lab
- Pio Lab
- Quarmby Lab
- Sen Lab
- Setiaputra Lab
- Thewalt Lab
- Tibbits Lab
- Unrau Lab
- Verheyen Lab
- Vocadlo Lab
- Young Lab
- Bioinformatics & Genomics
- Cells & Disease
- Infection & Immunity
- Macromolecular Biochemistry
- Undergraduate Research Opportunities
- C2D2 Centre for Cell Biology, Development, and Disease
- Omics Data Science Initiative
- Recent Publications
- Research Labs
- Resources
- News & Events
- Seminars
- MBB Calendar
- Colloquia
- Honours & Awards
- News Archives
- 2024
- Dr. Ryan Morin has been honored with the Bernard and Francine Dorval Prize from the Canadian Cancer Society
- Royal Society of Canada bestows Dr. Vocadlo with country’s highest academic honour
- Verheyen Lab breakthrough identifies gene that may reverse Parkinson’s disease
- MBB researchers awarded $2 million in funding from the Canadian Institutes of Health Research
- Dr. Glen Tibbits honoured as Distinguished SFU Professor
- Decoding the genome to predict the clinical course of lymphomas
- Reflecting on barriers and progress towards equity in science
- 2023 Award for Excellence in Supervision: Esther Verheyen
- In a recent Nature Communications paper, the Audas lab demonstrates that proteins can act as microscopic thermometers to sense and respond to changing environmental conditions
- 2023
- Dr. Dustin King speaks to Molecular Cell about sustainability and molecular biology
- Science Advances paper by new MBB PhD, Casey Engstrom and Professor Lynne Quarmby uses satellites to study the impact of Watermelon Snow on glacier loss in North America
- Dr. Sathiyaseelan and team explore the expression and therapeutic target potential of cysteine protease ATG4 in pancreatic cancer
- 2022
- 2021
- 2020
- 2019
- 2018
- 2017
- 2016
- 2015
- 2024
- Science Rendezvous
- Support MBB
- Faculty + Staff Portal
Dheva Setiaputra
Areas of interest
Maintaining genome stability is a challenge that every form of life must address. It is a fundamental biochemical process that plays a critical role in both disease development and therapy. For example, improper repair of DNA damage induces mutations that give rise to cancer. However, the inherent DNA repair deficiency of cancerous cells can be exploited by genotoxic therapy that results in specific cell death. Furthermore, with the advent of CRISPR-based therapeutics, the cellular response to Cas9-induced DNA breaks has resounding effects in clinical outcomes. It is essential to understand the molecular pathways that facilitate DNA repair to exploit it for cancer and gene therapy.
In the Setiaputra lab, we focus on exploring the molecular mechanisms underlying DNA repair pathway choice. There are multiple potential pathways that respond to DNA damage, and which pathway is brought to bear carries profound implications in the toxicity and mutational outcomes caused by specific genotoxic insults. The molecular basis of the cellular decisions leading to a specific repair trajectory is poorly understood. We use mammalian cell culture combined with biochemistry, cell biology, genomics, and computational biology to address this gap in understanding. Our ultimate goal is to leverage fundamental DNA repair research to identify novel targets and paradigms in targeted cancer therapy and gene editing.
Education
- BSc Honours., Biochemistry and Molecular Biology, University of British Columbia
- PhD, Biochemistry and Molecular Biology, University of British Columbia
- Postdoctoral fellow, Lunenfeld_Tanenbaum Research Institute
Selected Publication
- An AlphaFold2 map of the 53BP1 pathway identifies a direct SHLD3–RIF1 interaction critical for shieldin activity. Sifri C, Hoeg L, Durocher D, Setiaputra D. EMBO Reports (2023). doi:10.17632/dj2kv8zzxy.
- RIF1 acts in DNA repair through phosphopeptide recognition of 53BP1. Setiaputra D, Escribano-Diaz C, Reinert JK, Sadana P, Zong D, Callen E, Sifri C, Seebacher J, Nussenzweig A, Thomä NH, Durocher D. Molecular Cell (2022). doi:10.1016/j.molcel.2022.01.025.
- Shieldin—the protector of DNA ends. Setiaputra D, Durocher D. EMBO Reports (2019). doi:10.15252/embr.201847560.
- The shieldin complex mediates 53BP1-dependent DNA repair. Noordermeer SM, Adam A*, Setiaputra D*, Barazas M, Pettitt SJ, Ling AK, Olivieri M, Álvarez-Quilón A, Moatti N, Zimmermann M, Annunziato S, Krastev DB, Song F, Brandsma I, Frankum J, Brough R, Sherker A, Landry S, Szilard RK, Munro MM, McEwan A, Goullet de Rugy T, Lin ZY, Hart T, Moffat J, Gingras AC, Martin A, van Attikum H, Jonkers J, Lord CJ, Rottenberg S, Durocher D. Nature (2018). doi:10.1038/s41586-018-0340-7. *Co-first authors.
Courses
Fall 2024
Spring 2025
Future courses may be subject to change.